โครงสร้างอะตอม
นักปราชญ์ชาวกรีกชื่อดิโมคริตุส (Demokritos) ได้ให้แนวคิดไว้ว่า หน่วยย่อยที่เล็ก
ที่สุดของสารคือ อะตอม ซึ่งเป็นอนุภาคที่ไม่สามารถแบ่งให้เล็กลงไปได้อีกนักวิทยาศาสตร์
ได้ศึกษาเรื่องราวเกี่ยวกับอะตอมและแปลผลจากข้อมูลที่ได้จากการทดลองนำมาสร้างเป็น
มโนภาพหรือแบบจำลอง ซึ่งมีการพัฒนาตามลำดับดังนี้
1.1แบบจำลองอะตอมของดาลตัน
จอห์นดาลตัน นักวิทยาศาสตร์ชาวอังกฤษ ได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการ
เปลี่ยนแปลงมวลของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกัน
เป็นสารประกอบหนึ่ง ๆ ซึ่งมีสาระสำคัญดังนี้
เปลี่ยนแปลงมวลของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกัน
เป็นสารประกอบหนึ่ง ๆ ซึ่งมีสาระสำคัญดังนี้
1. ธาตุประกอบด้วยอนุภาคเล็ก ๆ หลายอนุภาค อนุภาคเหล่านี้เรียกว่า อะตอม ซึ่งแบ่งแยกและ
ทำให้สูญหายไม่ได้
ทำให้สูญหายไม่ได้
2. อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน เช่น มีมวลเท่ากัน แต่จะมีสมบัติแตกต่างจาก
อะตอมของธาตุอื่น
อะตอมของธาตุอื่น
3. สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยาเคมีกันในอัตราส่วนที่
เป็นเลขลงตัวน้อย ๆ
เป็นเลขลงตัวน้อย ๆ
4. อะตอมของธาตุสองชนิดอาจรวมตัวกันด้วยอัตราส่วนต่าง ๆ กัน เกิดเป็นสารประกอบได้
หลายชนิด
5. โมเลกุลของสารประกอบชนิดเดียวกันย่อมมีสมบัติแตกต่างจากโมเลกุลของสารประกอบ
อื่น ๆ เช่น โมเลกุลของน้ำ (H2O) ต่างจากโมเลกุลของดินประสิว (KNO3)
รูปแบบจำลองอะตอมของดลอตัน
1.2 แบบจำลองอะตอมของทอมสัน
1.2.1 หลอดรังสีแคโทด
นักวิทยาศาสตร์ศึกษาการนำไฟฟ้าของแก๊สโดยผ่านไฟฟ้ากระแสตรงที่มีความต่าง
ศักย์ระหว่างขั้วไฟฟ้าสูงเข้าไปในหลอดแก้วที่บรรจุแก๊สความดันต่ำ ปรากฏว่าจะเกิดรังสีพุ่งออกจากแคโทด
ไปยัง แอโนด เรียกรังสีชนิดนี้ว่า รังสีแคโทด และเรียกหลอดแก้วนี้ว่า หลอดรังสีแคโทด ดังแสดงในรูปที่ 2
ศักย์ระหว่างขั้วไฟฟ้าสูงเข้าไปในหลอดแก้วที่บรรจุแก๊สความดันต่ำ ปรากฏว่าจะเกิดรังสีพุ่งออกจากแคโทด
ไปยัง แอโนด เรียกรังสีชนิดนี้ว่า รังสีแคโทด และเรียกหลอดแก้วนี้ว่า หลอดรังสีแคโทด ดังแสดงในรูปที่ 2
หลอดรังสีแคโทด
1.2.2 หลอดรังสีแคโทดที่ดัดแปลงแล้ว
ทอมสันได้ทดลองเกี่ยวกับหลอดรังสีแคโทดเพิ่มเติมจำนวนมาก โดยดัดแปลงลักษณะ
ของหลอดรังสีแคโทดจากเดิมเล็กน้อย เช่น มีการเติมฉากเรืองแสงไว้ในหลอดรังสีด้วยดังในรูปที่ 3และ
ทอมสันได้นำผลการทดลองในลักษณะ
ของหลอดรังสีแคโทดจากเดิมเล็กน้อย เช่น มีการเติมฉากเรืองแสงไว้ในหลอดรังสีด้วยดังในรูปที่ 3และ
ทอมสันได้นำผลการทดลองในลักษณะ
ต่าง ๆ มาสรุปเกี่ยวกับแบบจำลองอะตอม โดยทำเป็นขั้น ๆ ดังนี้
หลอดรังสีแคโทดที่ดัดแปลงแล้ว
ผลการทดลองของทอมสันพบว่า ในตอนแรกความดันในหลอดแก้วมีมาก จะยังไม่เห็น
1) บรรจุแก๊สชนิดหนึ่งในหลอดรังสีแคโทด ที่ขั้วแอโนด และขั้วแคโทด ต่ออยู่กับเครื่องกำเนิดไฟฟ้ากระ
แสตรง ศักย์สูงที่ขั้วแอโนดเจาะรูเล็ก ๆ ตรงกลาง และ ปลายด้านหนึ่งของหลอดรังสีมีฉากเรืองแสง
(ทำด้วย ZnS) วางไว้ นำหลอดรังสีนี้ต่อเข้ากับเครื่องสูบสูญอากาศการเปลี่ยนแปลงใด ๆ ที่ฉากเรืองแสง
แม้ว่าจะใช้ศักย์ไฟฟ้าสูง ๆ ก็ตาม ต่อเมื่อลดความดันในหลอดแก้วให้ต่ำลงมาก ๆ จนเกือบเป็นสุญญากาศ
จะมีจุดสว่างเกิดขึ้นที่ฉากเรืองแสง บริเวณที่ตรงกับรูที่เจาะไว้ที่แอโนด
2) เพื่อทดสอบสมมติฐานที่ว่าอะตอมประกอบด้วยอนุภาคที่มีประจุ และต้องการจะทราบว่าประจุ
ไฟฟ้าที่มากระทบฉากเรืองแสง เป็นประจุบวกหรือประจุลบ ทอมสันจึงทดลองต่อไปโดยใช้สนาม
ไฟฟ้าเข้าช่วย โดยยึดหลักว่า อนุภาคที่มีประจุจะต้องเกิดการเบี่ยงเบนในสนามไฟฟ้า ถ้าอนุภาค
นั้นมีประจุบวกจะเบี่ยงเบนเข้าหาขั้วลบของสนามไฟฟ้า และถ้ามีประจุลบจะเบี่ยงเบนเข้าหาขั้วบวก
ทั้งนี้ศึกษาการเบี่ยงเบนได้จากฉากเรืองแสง
ไฟฟ้าที่มากระทบฉากเรืองแสง เป็นประจุบวกหรือประจุลบ ทอมสันจึงทดลองต่อไปโดยใช้สนาม
ไฟฟ้าเข้าช่วย โดยยึดหลักว่า อนุภาคที่มีประจุจะต้องเกิดการเบี่ยงเบนในสนามไฟฟ้า ถ้าอนุภาค
นั้นมีประจุบวกจะเบี่ยงเบนเข้าหาขั้วลบของสนามไฟฟ้า และถ้ามีประจุลบจะเบี่ยงเบนเข้าหาขั้วบวก
ทั้งนี้ศึกษาการเบี่ยงเบนได้จากฉากเรืองแสง
หลอดรังสีแคโทดที่มีการต่อสนามไฟฟ้าภายนอกเข้าไป
จากการทดลองพบว่าจุดสว่างบนฉากเรืองแสง เบนไปจากตำแหน่งเดิม คือเบี่ยงเบนขึ้นสู่ด้านบน ซึ่งถ้าลากเส้นจาก
ขั้วไฟฟ้าจะเห็นว่ารังสีนั้นเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า แสดงว่ารังสีนั้นจะต้องประกอบด้วยอนุภาคที่มีประจุ
จึงเกิดการเบี่ยงเบนขึ้น การที่แนวของรังสีเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า ก็แสดงว่ารังสีนั้นจะต้องประกอบ
ด้วยอนุภาคที่มีประจุลบ
ขั้วไฟฟ้าจะเห็นว่ารังสีนั้นเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า แสดงว่ารังสีนั้นจะต้องประกอบด้วยอนุภาคที่มีประจุ
จึงเกิดการเบี่ยงเบนขึ้น การที่แนวของรังสีเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า ก็แสดงว่ารังสีนั้นจะต้องประกอบ
ด้วยอนุภาคที่มีประจุลบ
แนวของรังสีแคโทดเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า
ซึ่งสังเกตได้จากจุดสว่างที่อยู่ตำแหน่งบนของฉากเรืองแสง
เมื่อทดลองถึงขั้นนี้ ทำให้ทอมสันตั้งสมมติฐานว่า อะตอมประกอบด้วยอนุภาคเล็ก ๆ ที่ส่วนหนึ่งมี
ประจุลบ แต่ยังไม่ทราบว่าอนุภาคที่มีประจุลบเหล่านี้เกิดจากแก๊สในหลอดรังสีหรือเกิดจากขั้วไฟฟ้า และไม่
ทราบว่ารังสีแคโทดนี้จะเหมือนกันหรือไม่ จะประกอบด้วยอนุภาคชนิดเดียวกันหรือไม่ และถ้าใช้แก๊สต่างชนิด
กันจะมีลักษณะเหมือนหรือต่างกันอย่างไร
ประจุลบ แต่ยังไม่ทราบว่าอนุภาคที่มีประจุลบเหล่านี้เกิดจากแก๊สในหลอดรังสีหรือเกิดจากขั้วไฟฟ้า และไม่
ทราบว่ารังสีแคโทดนี้จะเหมือนกันหรือไม่ จะประกอบด้วยอนุภาคชนิดเดียวกันหรือไม่ และถ้าใช้แก๊สต่างชนิด
กันจะมีลักษณะเหมือนหรือต่างกันอย่างไร
3) ทอมสันศึกษาสมบัติของรังสีแคโทดต่อไป โดยหาอัตราส่วนระหว่างประจุต่อมวลของรังสีนั้น ทั้งนี้อาศัย
หลักที่ว่านอกจากรังสีแคโทดจะเบี่ยงเบนได้ในสนามไฟฟ้าแล้ว ยังสามารถเบี่ยงเบนได้ในสนามแม่เหล็กด้วย
ในตอนแรกทอมสันได้ทดลองเปลี่ยนแก๊สชนิดต่าง ๆ ในหลอดรังสีแคโทดแล้วทดลองในทำนองเดียวกัน
ปรากฏว่าได้ผลการทดลองเหมือนเดิม และเมื่อลองเปลี่ยนชนิดของขั้วไฟฟ้าที่ใช้ทำแคโทดก็ยังคงพบว่า
ยังได้ผลการทดลองเหมือนเดิมอีกเช่นกัน คือจะมีรังสีที่ประกอบด้วยอนุภาคที่มีประจุลบพุ่งมาที่ฉากเรืองแสง
และรังสีเกิดการเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า จึงทำให้ไม่สามารถพิสูจน์ได้ว่า
อนุภาคที่มีประจุลบนั้นเป็นอนุภาคชนิดเดียวกันหรือไม่
ปรากฏว่าได้ผลการทดลองเหมือนเดิม และเมื่อลองเปลี่ยนชนิดของขั้วไฟฟ้าที่ใช้ทำแคโทดก็ยังคงพบว่า
ยังได้ผลการทดลองเหมือนเดิมอีกเช่นกัน คือจะมีรังสีที่ประกอบด้วยอนุภาคที่มีประจุลบพุ่งมาที่ฉากเรืองแสง
และรังสีเกิดการเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า จึงทำให้ไม่สามารถพิสูจน์ได้ว่า
อนุภาคที่มีประจุลบนั้นเป็นอนุภาคชนิดเดียวกันหรือไม่
ทอมสันจึงได้ทดลองต่อไปอีก โดยนำหลอดรังสีวางไว้ในสนามแม่เหล็ก ทั้งนี้ในทิศทางของสนามแม่เหล็กตั้ง
ฉากกับสนามไฟฟ้า
การเพิ่มสนามแม่เหล็กเข้าไปในการทดลองของทอมสัน
ในช่วงแรกที่ใส่สนามแม่เหล็กเข้าไป จุดสว่างบนฉากเรืองแสง จะเบี่ยงเบนขึ้นด้านบน เมื่อใส่สนามแม่เหล็ก
เข้าไป และเพิ่มอำนาจสนามแม่เหล็กทีละน้อยจะพบว่าจุดสว่างบนฉากเรืองแสงค่อย ๆ มีการเบี่ยงเบนน้อยลง
คือจุดเรืองแสงค่อย ๆ กลับมาสู่ตำแหน่งเดิมเหมือนตอน ที่ไม่มีสนามไฟฟ้า
เข้าไป และเพิ่มอำนาจสนามแม่เหล็กทีละน้อยจะพบว่าจุดสว่างบนฉากเรืองแสงค่อย ๆ มีการเบี่ยงเบนน้อยลง
คือจุดเรืองแสงค่อย ๆ กลับมาสู่ตำแหน่งเดิมเหมือนตอน ที่ไม่มีสนามไฟฟ้า
ผลจากการทดลองดังกล่าวแสดงว่าในขณะนี้ความแรงของสนามไฟฟ้ามีค่าเท่ากับความแรงของสนามแม่เหล็ก
จุดสว่างบนฉากเรืองแสงจึงไม่มีการเบี่ยงเบน
จุดสว่างบนฉากเรืองแสงจึงไม่มีการเบี่ยงเบน
เมื่อนำความแรงของสนามไฟฟ้า และความแรงเนื่องจากสนามแม่เหล็กที่กระทำต่ออนุภาคลบมา
คำนวณหาอัตราส่วนของประจุต่อมวล (e/m) ของอนุภาคลบนั้น ปรากฏว่าได้ค่าคงที่เท่ากันทุกครั้ง ไม่ว่า
ทอมสันจะใช้แก๊สชนิดใด หรือไม่ว่าจะใช้
คำนวณหาอัตราส่วนของประจุต่อมวล (e/m) ของอนุภาคลบนั้น ปรากฏว่าได้ค่าคงที่เท่ากันทุกครั้ง ไม่ว่า
ทอมสันจะใช้แก๊สชนิดใด หรือไม่ว่าจะใช้
โลหะใดเป็นแคโทด คือได้
จากผลการทดลอง และผลการคำนวณ ทำให้ทอมสันสรุปว่า “ อนุภาคลบในรังสีแคโทดจะต้องมีลักษณะเหมือนกัน
และอะตอมทุกชนิดย่อมจะมีอนุภาคที่มีประจุลบเป็นองค์ประกอบเหมือนกัน และเรียกอนุภาคลบนี้ว่า อิเล็กตรอน ”
1.2.3 การค้นพบโปรตอน
เนื่องจากอะตอมเป็นกลางทางไฟฟ้า และการที่พบว่าอะตอมของธาตุทุกชนิดจะต้องประกอบ
ด้วยอิเล็กตรอนซึ่งมีประจุลบ ทำให้นักวิทยาศาสตร์เชื่อว่าองค์ประกอบอีกส่วนหนึ่งของอะตอมจะต้องมีอนุภาคที่มี
ประจุบวกอยู่ด้วย
ด้วยอิเล็กตรอนซึ่งมีประจุลบ ทำให้นักวิทยาศาสตร์เชื่อว่าองค์ประกอบอีกส่วนหนึ่งของอะตอมจะต้องมีอนุภาคที่มี
ประจุบวกอยู่ด้วย
ออยเกน โกลด์สไตน์ (Eugen Goldstein) นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองเกี่ยวกับหลอด
รังสีแคโทด
รังสีแคโทด
โดยดัดแปลงหลอดรังสีแคโทดเล็กน้อย
การทดลองของโกลด์สไตน์
โกลด์สไตน์ได้เลื่อนขั้วแคโทดและแอโนดมาไว้เกือบตรงกลาง แล้วเพิ่มฉากเรืองแสง ข ที่ปลายด้านหนึ่งของ
หลอดแก้ว (ซ้ายมือ) โดยคิดว่าการที่อนุภาคที่มีประจุลบสามารถเคลื่อนที่ผ่านขั้วแอโนดไปที่ฉากเรืองแสง ก. ได้อนุภาค
ที่มีประจุบวกก็ควรจะเคลื่อนที่ผ่านแคโทดไปที่ฉากเรืองแสง ข ได้ เช่นเดียวกัน ดังนั้นจึงเจาะรูตรงกลางของขั้วแอโนด
และแคโทดไว้ จากการทดลองเมื่อผ่านกระแสไฟฟ้า ปรากฏว่ามีจุดสว่างเกิดขึ้นทั้งบนฉากเรืองแสง ก และ ข ซึ่ง
โกลด์สไตน์ อธิบายว่า
หลอดแก้ว (ซ้ายมือ) โดยคิดว่าการที่อนุภาคที่มีประจุลบสามารถเคลื่อนที่ผ่านขั้วแอโนดไปที่ฉากเรืองแสง ก. ได้อนุภาค
ที่มีประจุบวกก็ควรจะเคลื่อนที่ผ่านแคโทดไปที่ฉากเรืองแสง ข ได้ เช่นเดียวกัน ดังนั้นจึงเจาะรูตรงกลางของขั้วแอโนด
และแคโทดไว้ จากการทดลองเมื่อผ่านกระแสไฟฟ้า ปรากฏว่ามีจุดสว่างเกิดขึ้นทั้งบนฉากเรืองแสง ก และ ข ซึ่ง
โกลด์สไตน์ อธิบายว่า
จุดสว่างที่เกิดขึ้นบนฉากเรืองแสง ข จะต้องเกิดจากรังสีที่ประกอบด้วยอนุภาคที่มีประจุไฟฟ้าบวก เคลื่อนที่ผ่านรูตรงกลาง
ของแคโทดไปยังฉากเรืองแสง แต่ยังไม่ทราบว่ารังสีที่มีประจุไฟฟ้าบวกนี้เกิดจากอะตอมของก๊าซหรือ
เกิดจากอะตอมของขั้วไฟฟ้า
ของแคโทดไปยังฉากเรืองแสง แต่ยังไม่ทราบว่ารังสีที่มีประจุไฟฟ้าบวกนี้เกิดจากอะตอมของก๊าซหรือ
เกิดจากอะตอมของขั้วไฟฟ้า
และมีลักษณะเหมือนกันหรือไม่
จากการทดลองหลาย ๆ ครั้งโดยการเปลี่ยนชนิดของแก๊สในหลอดแก้ว ปรากฏว่าอนุภาคที่มีประ
จุบวกเหล่านี้มีอัตราส่วนของประจุต่อมวลไม่เท่ากัน ขึ้นอยู่กับชนิดของแก๊สที่ใช้
และเมื่อทดลองโดยเปลี่ยนโลหะที่ใช้ทำขั้วไฟฟ้าหลาย ๆ ชนิด แต่ใช้
จุบวกเหล่านี้มีอัตราส่วนของประจุต่อมวลไม่เท่ากัน ขึ้นอยู่กับชนิดของแก๊สที่ใช้
และเมื่อทดลองโดยเปลี่ยนโลหะที่ใช้ทำขั้วไฟฟ้าหลาย ๆ ชนิด แต่ใช้
ในหลอดแก้วชนิดเดียวกัน ปรากฏว่าผลการทดลองได้อัตราส่วนของประจุต่อมวลเท่ากัน
แสดงว่าอนุภาคบวกในหลอดรัง
แสดงว่าอนุภาคบวกในหลอดรัง
สีแคโทดเกิดจากแก๊สไม่ได้เกิดจากขั้วไฟฟ้า
ต่อมาโกลด์สไตน์ได้พบว่าถ้าทำการทดลองโดยใช้แก๊สไฮโดรเจน จะได้อนุภาคที่มีจำนวน
ประจุเท่ากับประจุของอิเล็กตรอน และเรียกอนุภาคบวกที่เกิดจากแก๊สไฮโดรเจนว่า โปรตอน
อะตอมของแก๊สไฮโดรเจนจะมี 1 โปรตอน
ประจุเท่ากับประจุของอิเล็กตรอน และเรียกอนุภาคบวกที่เกิดจากแก๊สไฮโดรเจนว่า โปรตอน
อะตอมของแก๊สไฮโดรเจนจะมี 1 โปรตอน
และอะตอมของธาตุอื่น ๆ อนุภาคบวกจะมีมากกว่า 1 โปรตอน แต่จำนวนโปรตอนและอิเล็กตรอนเท่ากัน
จากผลการทดลองที่ผ่านมา ทั้งของทอมสันและของโกลด์สไตน์ ทำให้ทอมสันได้ข้อมูลเกี่ยว
กับอะตอมมากขั้น
กับอะตอมมากขั้น
จึงได้เสนอแบบจำลองอะตอมดังนี้
“ อะตอมมีลักษณะเป็นทรงกลม ประกอบด้วยอนุภาคโปรตอนที่มีประจุบวก และอนุภาค
อิเล็กตรอนซึ่งมีประจุลบกระจายอยู่ทั่วไปอย่างสม่ำเสมอในอะตอม อะตอมในสภาพที่เป็นกลางทาง
ไฟฟ้าจะมีจำนวนประจุบวกเท่ากับประจุลบ”
ไฟฟ้าจะมีจำนวนประจุบวกเท่ากับประจุลบ”
แบบจำลองอะตอมของทอมสัน
1.2.4 การหาค่าประจุของอิเล็กตรอน
ใน พ.ศ. 2451 โรเบิร์ต แอนดูรส์ มิลลิแกน (Robert Andrews Millikan) นักวิทยาศาสตร์
ชาวอเมริกันได้ทำการทดลองหาค่าประจุของอิเล็กตรอนโดยใช้การทดลองที่เรียกว่า “Oil drop Experiment ”
ชาวอเมริกันได้ทำการทดลองหาค่าประจุของอิเล็กตรอนโดยใช้การทดลองที่เรียกว่า “Oil drop Experiment ”
เครื่องมือประกอบด้วยขั้วไฟฟ้า 2 ขั้ว ต่ออยู่กับเครื่องกำเนิดไฟฟ้า ขั้วไฟฟ้าบนเป็น
ขั้วบวก และขั้วไฟฟ้าด้านล่างเป็นขั้วลบ ขั้วไฟฟ้าทั้ง 2 ใส่ไว้ในกล่องมีอากาศอยู่ภายใน
ขั้วบวก และขั้วไฟฟ้าด้านล่างเป็นขั้วลบ ขั้วไฟฟ้าทั้ง 2 ใส่ไว้ในกล่องมีอากาศอยู่ภายใน
เมื่อพ่นหยดน้ำมันเม็ดเล็ก ๆ เข้าไประหว่าง ขั้วไฟฟ้าทั้งสอง เนื่องจากน้ำมันแต่ละหยดมีมวล
ดังนั้นจึงถูกแรงดึงดูดของโลกทำให้ตกลงมาสู่ด้านล่าง
ดังนั้นจึงถูกแรงดึงดูดของโลกทำให้ตกลงมาสู่ด้านล่าง
ในขณะที่เม็ดน้ำมันยังไม่มีประจุไฟฟ้า การที่จะบังคับให้เคลื่อนที่ขึ้นลงจึงยังทำไม่ได้ ดังนั้นในตอนแรก
จึงต้องเติมประจุลงบนหยดน้ำมันก่อนโดยการฉายรังสีเอ็กซ์ (X-ray) เข้าไป รังสีเอ็กซ์จะไปชนกับอากาศ
ในกล่อง ทำให้อะตอมของอากาศเกิดการแตกตัว
จึงต้องเติมประจุลงบนหยดน้ำมันก่อนโดยการฉายรังสีเอ็กซ์ (X-ray) เข้าไป รังสีเอ็กซ์จะไปชนกับอากาศ
ในกล่อง ทำให้อะตอมของอากาศเกิดการแตกตัว
การทดลอง Oil drop Experiment
ในปี พ.ศ. 2454 รัทเทอร์ฟอร์ด ได้ทำการทดลองในประเทศอังกฤษร่วมกับ ฮันส์ ไกเกอร์ และ
เออร์เนสต์ มาร์สเตน ศึกษาทิศทางการเคลื่อนที่ของอนุภาคแอลฟา เมื่อยิงอนุภาคแอลฟาซึ่งได้จากการ
สลายตัวของสารกัมมันตรังสีเข้าไปที่แผ่นทองคำบาง ๆ
เออร์เนสต์ มาร์สเตน ศึกษาทิศทางการเคลื่อนที่ของอนุภาคแอลฟา เมื่อยิงอนุภาคแอลฟาซึ่งได้จากการ
สลายตัวของสารกัมมันตรังสีเข้าไปที่แผ่นทองคำบาง ๆ
การทดลองของรัทเทอร์ฟอร์ด
การตรวจสอบทิศทางการ เคลื่อนที่ของอนุภาคหลังจากกระทบแผ่นทองคำแล้ว ทำได้โดยใช้ฉากเรืองแสงขด
เป็นวงกลมล้อมรอบแผ่นทองคำไว้ โดยเว้นที่เฉพาะบริเวณที่จะให้อนุภาคแอลฟาผ่านเข้ามาเท่านั้น ทุก ๆ ครั้งที่อนุ
ภาคแอลฟากระทบฉากเรืองแสงจะพบว่ามีจุดสว่าง เกิดขึ้นที่ฉากเรืองแสงนั้น(อนุภาคแอลฟาคือนิวเคลียส
เป็นวงกลมล้อมรอบแผ่นทองคำไว้ โดยเว้นที่เฉพาะบริเวณที่จะให้อนุภาคแอลฟาผ่านเข้ามาเท่านั้น ทุก ๆ ครั้งที่อนุ
ภาคแอลฟากระทบฉากเรืองแสงจะพบว่ามีจุดสว่าง เกิดขึ้นที่ฉากเรืองแสงนั้น(อนุภาคแอลฟาคือนิวเคลียส
ของธาตุฮีเลียม ซึ่งมีประจุบวก ดังนั้นเมื่อกระทบฉากเรืองแสงจึงมีจุดสว่างเกิดขึ้น ทำให้ทราบทิศทาง
การเคลื่อนที่ของอนุภาคแอลฟา) จากการทดลองพบว่าอนุภาคแอลฟาส่วนใหญ่จะวิ่งเป็นแนวเส้นตรง
ผ่านแผ่นทองคำไปกระทบฉากเรืองแสงซึ่งก็คือบริเวณจุด ก ที่อยู่หลังแผ่นทองคำบางส่วนจะเบี่ยงเบนไป
จากแนวเส้นตรง คือบริเวณจุด ข ของฉากเรืองแสง และมีน้อยครั้งมากที่อนุภาคสะท้อนกลับมากระทบฉาก
เรืองแสงที่จุด ค ซึ่งอยู่หน้าแผ่นทองคำ
จากผลการทดลองทำให้รัทเทอร์ฟอร์ดแปลกใจมาก เพราะถ้านำแบบจำลองอะตอมของทอมสันอธิบายทิศทาง
ที่น่าจะเกิดขึ้น เมื่อยิงอนุภาคแอลฟาไปที่แผ่นทองคำ อนุภาคส่วนใหญ่ควรจะเบี่ยงเบนไปจากแนวเส้นตรง ทั้งเพราะ
ตามแบบจำลองอะตอมของทอมสัน อะตอมประกอบด้วยอนุภาคบวก และลบ กระจายอยู่ทั่วไปในอะตอม เมื่อยิงอนุภาค
แอลฟาซึ่งมีประจุบวกเข้าไปในอะตอมของแผ่นทองคำ อนุภาคแอลฟาควรจะผลักกับโปรตอนซึ่งมีประจุบวกเหมือนกัน
อันจะเป็นผลทำให้ทิศทางของอนุภาคแอลฟาเบี่ยงเบนดังในรูป แต่จากผลการทดลอง การที่อนุภาคแอลฟาส่วนใหญ่วิ่ง
ผ่านทองคำเป็นแนวเส้นตรงจึงทำให้รัทเทอร์ฟอร์ดแปลกใจมาก โดยเฉพาะอนุภาคแอลฟาส่วนที่สะท้อนกลับยิ่งทำให้
แปลกใจมากยิ่งขึ้น ทั้งนี้เพราะการที่อนุภาคแอลฟาสะท้อนกลับได้แสดงว่าภายในอะตอมจะต้องมีสิ่งที่มีมวลมาก
ขวางทางอยู่ เมื่ออนุภาคแอลฟาไปชนจึงเกิดการสะท้อนกลับ แต่จากแบบจำลองอะตอมของทอมสันภายในอะตอม
ไม่มีสิ่งหนึ่งสิ่งใดอยู่รวมกันเป็นกลุ่มก้อนเลย ดังนั้นการสะท้อนกลับของอนุภาคแอลฟาเป็นมุมมากกว่า 90 องศา
จึงไม่มีทางเกิดขึ้นได้ จากการที่แบบจำลองของทอมสันไม่สามารถอธิบายผลการทดลองได้ ทำให้รัทเทอร์ฟอร์ด
คิดว่าแบบจำลองอะตอมของทอมสันยังไม่ถูกต้อง จึงเสนอแบบจำลองอะตอมใหม่ขึ้นมา
เพื่อใช้อธิบายผลการทดลองดังกล่าว
ที่น่าจะเกิดขึ้น เมื่อยิงอนุภาคแอลฟาไปที่แผ่นทองคำ อนุภาคส่วนใหญ่ควรจะเบี่ยงเบนไปจากแนวเส้นตรง ทั้งเพราะ
ตามแบบจำลองอะตอมของทอมสัน อะตอมประกอบด้วยอนุภาคบวก และลบ กระจายอยู่ทั่วไปในอะตอม เมื่อยิงอนุภาค
แอลฟาซึ่งมีประจุบวกเข้าไปในอะตอมของแผ่นทองคำ อนุภาคแอลฟาควรจะผลักกับโปรตอนซึ่งมีประจุบวกเหมือนกัน
อันจะเป็นผลทำให้ทิศทางของอนุภาคแอลฟาเบี่ยงเบนดังในรูป แต่จากผลการทดลอง การที่อนุภาคแอลฟาส่วนใหญ่วิ่ง
ผ่านทองคำเป็นแนวเส้นตรงจึงทำให้รัทเทอร์ฟอร์ดแปลกใจมาก โดยเฉพาะอนุภาคแอลฟาส่วนที่สะท้อนกลับยิ่งทำให้
แปลกใจมากยิ่งขึ้น ทั้งนี้เพราะการที่อนุภาคแอลฟาสะท้อนกลับได้แสดงว่าภายในอะตอมจะต้องมีสิ่งที่มีมวลมาก
ขวางทางอยู่ เมื่ออนุภาคแอลฟาไปชนจึงเกิดการสะท้อนกลับ แต่จากแบบจำลองอะตอมของทอมสันภายในอะตอม
ไม่มีสิ่งหนึ่งสิ่งใดอยู่รวมกันเป็นกลุ่มก้อนเลย ดังนั้นการสะท้อนกลับของอนุภาคแอลฟาเป็นมุมมากกว่า 90 องศา
จึงไม่มีทางเกิดขึ้นได้ จากการที่แบบจำลองของทอมสันไม่สามารถอธิบายผลการทดลองได้ ทำให้รัทเทอร์ฟอร์ด
คิดว่าแบบจำลองอะตอมของทอมสันยังไม่ถูกต้อง จึงเสนอแบบจำลองอะตอมใหม่ขึ้นมา
เพื่อใช้อธิบายผลการทดลองดังกล่าว
แบบจำลองที่สร้างขึ้นเพื่อการอธิบายของรัทเทอร์ฟอรด์
การที่อนุภาคแอลฟาส่วนใหญ่เคลื่อนที่ผ่านอะตอมของทองคำเป็นแนวเส้นตรง แสดงว่าภายในอะตอมทองคำ
ควรจะมีที่ว่างเป็นจำนวนมาก และการที่อนุภาคแอลฟาบางส่วนสะท้อนกลับแสดงว่าภายในอะตอมควรจะมี
อนุภาคอะไรสักอย่างที่รวมกันเป็นกลุ่มก้อน และมีปริมาณมากพอ รวมทั้ง มีมวลมากพอที่จะทำให้อนุภาค
สะท้อนกลับเมื่อกระทบถูกได้ เนื่องจากภายในอะตอม(ในขณะนั้น) มีแต่อิเล็กตรอน และโปรตอน โดยที่อิเล็กตรอนมี
มวลน้อยมาก รัทเทอร์ฟอร์ดจึงคิดว่าอนุภาคส่วนที่มารวมกันเป็นกลุ่มก้อนจึงน่าจะเป็นอนุภาค
ของโปรตอน ดังนั้นเพื่อที่จะอธิบายผลการทดลอง รัทเทอร์ฟอร์ดจึงเสนอแบบจำลองแบบใหม่ เรียกว่า
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด ดังนี้
ควรจะมีที่ว่างเป็นจำนวนมาก และการที่อนุภาคแอลฟาบางส่วนสะท้อนกลับแสดงว่าภายในอะตอมควรจะมี
อนุภาคอะไรสักอย่างที่รวมกันเป็นกลุ่มก้อน และมีปริมาณมากพอ รวมทั้ง มีมวลมากพอที่จะทำให้อนุภาค
สะท้อนกลับเมื่อกระทบถูกได้ เนื่องจากภายในอะตอม(ในขณะนั้น) มีแต่อิเล็กตรอน และโปรตอน โดยที่อิเล็กตรอนมี
มวลน้อยมาก รัทเทอร์ฟอร์ดจึงคิดว่าอนุภาคส่วนที่มารวมกันเป็นกลุ่มก้อนจึงน่าจะเป็นอนุภาค
ของโปรตอน ดังนั้นเพื่อที่จะอธิบายผลการทดลอง รัทเทอร์ฟอร์ดจึงเสนอแบบจำลองแบบใหม่ เรียกว่า
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด ดังนี้
“อะตอมมีลักษณะเป็นทรงกลม ประกอบด้วยนิวเคลียสซึ่งคือโปรตอนที่รวมกันอยู่ตรงกลางของ
อะตอม และมีอิเล็กตรอนวิ่งอยู่รอบ ๆ นิวเคลียส นิวเคลียสมีขนาดเล็ก แต่มีมวลมากและมีประจุบวก ส่วน
อิเล็กตรอนจะมีมวลน้อยและมีประจุลบ จำนวนอิเล็กตรอนจะเท่ากับจำนวนโปรตอน”
อะตอม และมีอิเล็กตรอนวิ่งอยู่รอบ ๆ นิวเคลียส นิวเคลียสมีขนาดเล็ก แต่มีมวลมากและมีประจุบวก ส่วน
อิเล็กตรอนจะมีมวลน้อยและมีประจุลบ จำนวนอิเล็กตรอนจะเท่ากับจำนวนโปรตอน”
จากแบบจำลองอะตอมตามมโนภาพของรัทเทอร์ฟอร์ดจะเห็นได้ว่า อะตอมถูกแบ่งเป็น 2 ส่วน ส่วนหนึ่งคือ
นิวเคลียส ซึ่งอยู่ตรงกลางอะตอม มีขนาดเล็กมากเมื่อเปรียบเทียบกับขนาดอะตอม อีกส่วนหนึ่งคือ
อิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียส ลักษณะของอะตอมจึงเป็นแบบโปร่ง ภายในอะตอมมีช่องว่างอยู่มาก
นิวเคลียส ซึ่งอยู่ตรงกลางอะตอม มีขนาดเล็กมากเมื่อเปรียบเทียบกับขนาดอะตอม อีกส่วนหนึ่งคือ
อิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียส ลักษณะของอะตอมจึงเป็นแบบโปร่ง ภายในอะตอมมีช่องว่างอยู่มาก
ภาพที่เกิดจากการสรุปผลการทดลองของรัทเทอร์ฟอร์ด
จากแบบจำลองอะตอมตามมโนภาพของรัทเทอร์ฟอร์ดจะเห็นได้ว่าอะตอมถูกแบ่งเป็น 2 ส่วน
ส่วนที่หนึ่งคือนิวเคลียส ซึ่งอยู่ตรงกลางอะตอม มีขนาดเล็กมากเมื่อเปรียบเทียบกับขนาดอะตอม
อีกส่วนหนึ่งคืออิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียส ลักษณะของอะตอมจึงเป็นแบบโปร่ง ภายในอะตอม
มีช่องว่างอยู่มาก
อีกส่วนหนึ่งคืออิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียส ลักษณะของอะตอมจึงเป็นแบบโปร่ง ภายในอะตอม
มีช่องว่างอยู่มาก
รัทเทอร์ฟอร์ดได้ใช้แบบจำลองอะตอมที่เสนอขึ้นใหม่อธิบายผลการทดลองดังนี้ เนื่องจาก
นิวเคลียสมีขนาดเล็กมาก เมื่อเปรียบเทียบกับขนาดของอะตอม ทำให้มีช่องว่างภายในอะตอมมาก
เมื่อยิงอนุภาคแอลฟาเข้าไปอนุภาคส่วนใหญ่จึงสามารถวิ่งทะลุผ่านแผ่นทองคำไปได้โดยไม่มีการ
เบี่ยงเบนมีบางครั้งอนุภาคแอลฟาวิ่งเข้ามาใกล้นิวเคลียสซึ่งมีประจุบวกเหมือนกันจะถูกนิวเคลียสผลักออกไป
ซึ่งทำให้ทิศทางของอนุภาคแอลฟาเบี่ยงเบนออกไปและนาน ๆ ครั้ง อนุภาคแอลฟาจะวิ่งตรงไปชนกับนิวเคลียสทำให้
สะท้อนกลับออกมา แต่เนื่องจากนิวเคลียสมีขนาดเล็กมากเกินไป ดังนั้นโอกาสที่อนุภาคแอลฟาจะชนกับนิวเคลียสจึง
น้อยมาก ๆ สำหรับอิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียสเนื่องจากมีมวลน้อยมาก ถึงแม้ว่าอนุภาคแอลฟาจะวิ่งมาชนก็
จะไม่มีผลทำให้ทิศทางการเคลื่อนที่ของอนุภาคแอลฟาเบี่ยงเบนไป
นิวเคลียสมีขนาดเล็กมาก เมื่อเปรียบเทียบกับขนาดของอะตอม ทำให้มีช่องว่างภายในอะตอมมาก
เมื่อยิงอนุภาคแอลฟาเข้าไปอนุภาคส่วนใหญ่จึงสามารถวิ่งทะลุผ่านแผ่นทองคำไปได้โดยไม่มีการ
เบี่ยงเบนมีบางครั้งอนุภาคแอลฟาวิ่งเข้ามาใกล้นิวเคลียสซึ่งมีประจุบวกเหมือนกันจะถูกนิวเคลียสผลักออกไป
ซึ่งทำให้ทิศทางของอนุภาคแอลฟาเบี่ยงเบนออกไปและนาน ๆ ครั้ง อนุภาคแอลฟาจะวิ่งตรงไปชนกับนิวเคลียสทำให้
สะท้อนกลับออกมา แต่เนื่องจากนิวเคลียสมีขนาดเล็กมากเกินไป ดังนั้นโอกาสที่อนุภาคแอลฟาจะชนกับนิวเคลียสจึง
น้อยมาก ๆ สำหรับอิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียสเนื่องจากมีมวลน้อยมาก ถึงแม้ว่าอนุภาคแอลฟาจะวิ่งมาชนก็
จะไม่มีผลทำให้ทิศทางการเคลื่อนที่ของอนุภาคแอลฟาเบี่ยงเบนไป
จะเห็นว่าแบบจำลองอะตอมที่รัทเทอร์ฟอร์ดเสนอขึ้นมาใหม่นี้สามารถอธิบายผลการทดลองได้เป็นอย่างดี
และตามมโนภาพของรัทเทอร์ฟอร์ด มวลส่วนใหญ่ของอะตอมก็คือมวลของนิวเคลียสนั่นเอง อิเล็กตรอนแม้ว่าจะเป็นส่วน
ประกอบที่ทำให้อะตอมมีขนาดใหญ่ขึ้นจะมีมวลน้อยมากซึ่งจะไม่มีผลต่อมวลของอะตอม
และตามมโนภาพของรัทเทอร์ฟอร์ด มวลส่วนใหญ่ของอะตอมก็คือมวลของนิวเคลียสนั่นเอง อิเล็กตรอนแม้ว่าจะเป็นส่วน
ประกอบที่ทำให้อะตอมมีขนาดใหญ่ขึ้นจะมีมวลน้อยมากซึ่งจะไม่มีผลต่อมวลของอะตอม
อย่างไรก็ตามถึงแม้ว่าแบบจำลองอะตอมของรัทเทอร์ฟอร์ดสามารถใช้อธิบายผลการทดลองได้ถูกต้อง
กว่าแบบจำลองอะตอมของทอมสัน แต่ก็ยังมีข้อบกพร่องที่ยังไม่สามารถอธิบายได้ เช่น ทำไมโปรตอนซึ่งมีประจุบวก
เหมือนกัน จึงรวมกันอยู่ตรงกลางเป็นนิวเคลียสได้ ทั้ง ๆ ที่ควรจะผลักกัน มีอะไรมายึดโปรตอนให้อยู่รวมกันได้ และทำไม
อิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียสจึงไม่ผลักกัน ทั้ง ๆ ที่มีประจุลบเหมือนกัน รวมทั้งทำไมจึงไม่ถูกดึงดูดเข้า
ไปที่นิวเคลียส ซึ่งเป็นเหตุที่ต้องมีการปรับปรุงและเสนอแบบจำลองอะตอมใหม่ ๆ ขึ้นมา
1.3.1 อนุภาคมูลฐานของอะตอม
กว่าแบบจำลองอะตอมของทอมสัน แต่ก็ยังมีข้อบกพร่องที่ยังไม่สามารถอธิบายได้ เช่น ทำไมโปรตอนซึ่งมีประจุบวก
เหมือนกัน จึงรวมกันอยู่ตรงกลางเป็นนิวเคลียสได้ ทั้ง ๆ ที่ควรจะผลักกัน มีอะไรมายึดโปรตอนให้อยู่รวมกันได้ และทำไม
อิเล็กตรอนที่วิ่งอยู่รอบ ๆ นิวเคลียสจึงไม่ผลักกัน ทั้ง ๆ ที่มีประจุลบเหมือนกัน รวมทั้งทำไมจึงไม่ถูกดึงดูดเข้า
ไปที่นิวเคลียส ซึ่งเป็นเหตุที่ต้องมีการปรับปรุงและเสนอแบบจำลองอะตอมใหม่ ๆ ขึ้นมา
1.3.1 อนุภาคมูลฐานของอะตอม
จากการศึกษาเกี่ยวกับโครงสร้างอะตอมในตอนแรก ทำให้นักวิทยาศาสตร์เชื่อว่าอะตอมประกอบ
ด้วยอนุภาค 2ชนิด คือ อิเล็กตรอน และโปรตอน จนกระทั่งการศึกษาเกี่ยวกับอะตอมได้พัฒนาการ
มากขึ้น จึงได้ทราบว่านอกจากจะมีอิเล็กตรอน และโปรตอนแล้วยังมีนิวตรอนและอนุภาค อื่น ๆ
อีกหลายชนิด
ในปี พ.ศ. 2456 เฮนรี มอสเลย์ (Henry Mosley) นักวิทยาศาสตร์
ด้วยอนุภาค 2ชนิด คือ อิเล็กตรอน และโปรตอน จนกระทั่งการศึกษาเกี่ยวกับอะตอมได้พัฒนาการ
มากขึ้น จึงได้ทราบว่านอกจากจะมีอิเล็กตรอน และโปรตอนแล้วยังมีนิวตรอนและอนุภาค อื่น ๆ
อีกหลายชนิด
ในปี พ.ศ. 2456 เฮนรี มอสเลย์ (Henry Mosley) นักวิทยาศาสตร์
สเปกตรัมรังสีเอกซ์ของธาตุ เมื่อนำจำนวนโปรตอนของธาตุมาพิจารณาร่วมกับ
แบบจำลองอะตอมของรัทเทอร์ฟอร์ดในแง่มวลของอะตอม จะพบว่าแบบจำลอง
อะตอมของรัทเทอร์ฟอร์ดยังไม่ถูกต้องนัก กล่าวคือตามแบบจำลองอะตอม
ของรัทเทอร์ฟอร์ด มวลของอะตอมก็คือมวลของนิวเคลียส หรือมวลของโปรตอน
อย่างเดียวนั่นเอง ถ้านิวเคลียสของอะตอมประกอบด้วยโปรตอนอย่างเดียว
มวลอะตอมก็น่าจะเท่ากับมวลของโปรตอนมารวมกัน แต่จากการทดลองหามวล
ของอะตอมพบว่ามวลอะตอมของธาตุต่าง ๆ มักจะมีค่ามากกว่ามวลของ
โปรตอนเสมอ เช่น ธาตุคาร์บอนมีโปรตอน 6 ตัว ตามแบบจำลองของรัทเทอร์ฟอร์ด
มวลอะตอมควรจะมีค่าเป็น 6 หน่วย แต่จากการทดลองพบว่ามีมวลอะตอมถึง 12 หน่วย หรือธาตุออกซิเจนมี 8
โปรตอน แต่มีมวลอะตอม 16 หน่วย เป็นต้น
ของรัทเทอร์ฟอร์ด มวลของอะตอมก็คือมวลของนิวเคลียส หรือมวลของโปรตอน
อย่างเดียวนั่นเอง ถ้านิวเคลียสของอะตอมประกอบด้วยโปรตอนอย่างเดียว
มวลอะตอมก็น่าจะเท่ากับมวลของโปรตอนมารวมกัน แต่จากการทดลองหามวล
ของอะตอมพบว่ามวลอะตอมของธาตุต่าง ๆ มักจะมีค่ามากกว่ามวลของ
โปรตอนเสมอ เช่น ธาตุคาร์บอนมีโปรตอน 6 ตัว ตามแบบจำลองของรัทเทอร์ฟอร์ด
มวลอะตอมควรจะมีค่าเป็น 6 หน่วย แต่จากการทดลองพบว่ามีมวลอะตอมถึง 12 หน่วย หรือธาตุออกซิเจนมี 8
โปรตอน แต่มีมวลอะตอม 16 หน่วย เป็นต้น
จากผลการทดลองพบว่าอะตอมของธาตุส่วนใหญ่จะมีมวลเป็น 2 เท่า หรือมากกว่า 2 เท่า
หรือมากกว่า 2 เท่าของโปรตอน ทำให้รัทเทอร์ฟอร์ดตั้งข้อสันนิษฐานว่า ภายในอะตอมน่า
จะมีอนุภาคหนึ่งซึ่งไม่ใช่โปรตอน และอิเล็กตรอนอยู่ด้วย โดยที่อนุภาคนี้จะอยู่รวมกันใน
นิวเคลียส และมีมวลใกล้เคียงกับมวลของโปรตอน รวมทั้งเป็นกลางทางไฟฟ้าด้วย ซึ่งต่อมา
ก็ได้มีการพิสูจน์ข้อสันนิษฐานของรัทเทอร์ฟอร์ด จนยอมรับกันว่าเป็นความจริง
หรือมากกว่า 2 เท่าของโปรตอน ทำให้รัทเทอร์ฟอร์ดตั้งข้อสันนิษฐานว่า ภายในอะตอมน่า
จะมีอนุภาคหนึ่งซึ่งไม่ใช่โปรตอน และอิเล็กตรอนอยู่ด้วย โดยที่อนุภาคนี้จะอยู่รวมกันใน
นิวเคลียส และมีมวลใกล้เคียงกับมวลของโปรตอน รวมทั้งเป็นกลางทางไฟฟ้าด้วย ซึ่งต่อมา
ก็ได้มีการพิสูจน์ข้อสันนิษฐานของรัทเทอร์ฟอร์ด จนยอมรับกันว่าเป็นความจริง
ประมาณปี พ.ศ. 2456 ทอมสันได้ทดลองเกี่ยวกับมวลของอนุภาค
บวกที่ได้
บวกที่ได้
จากหลอดรังสีแคโทดพบว่าในขณะที่ใช้แก๊สนีออนใส่ในหลอดรังสีจะสามารถ
หามวลของอนุภาคบวกได้ถึง 2 ค่า คือ 20 และ 22 หน่วย ซึ่งแสดงว่าแก๊สนีออน
จะต้องมีอะตอม 2 ชนิด ซึ่งมีมวลไม่เท่ากัน ซึ่งต่อมา
เฟรเดอริก ซอดดี(Frederick Soddy)
ได้ตั้งชื่ออะตอมของธาตุชนิดเดียวกันแต่มีมวลต่างกันว่า
ต่างกันว่า ไอโซโทป
ซึ่งถือว่าผลการทดลองนี้เป็นข้อมูลสนับสนุนข้อเสนอ
ของรัทเทอร์ฟอร์ดที่ว่าภายใน
นิวเคลียสควรจะมีอนุภาคอีกอย่างหนึ่งซึ่งมีมวลใกล้เคียงกับโปรตอน
แต่ไม่มีประจุ
หามวลของอนุภาคบวกได้ถึง 2 ค่า คือ 20 และ 22 หน่วย ซึ่งแสดงว่าแก๊สนีออน
จะต้องมีอะตอม 2 ชนิด ซึ่งมีมวลไม่เท่ากัน ซึ่งต่อมา
เฟรเดอริก ซอดดี(Frederick Soddy)
ได้ตั้งชื่ออะตอมของธาตุชนิดเดียวกันแต่มีมวลต่างกันว่า
ต่างกันว่า ไอโซโทป
ซึ่งถือว่าผลการทดลองนี้เป็นข้อมูลสนับสนุนข้อเสนอ
ของรัทเทอร์ฟอร์ดที่ว่าภายใน
นิวเคลียสควรจะมีอนุภาคอีกอย่างหนึ่งซึ่งมีมวลใกล้เคียงกับโปรตอน
แต่ไม่มีประจุ
ปี พ.ศ. 2475 เจมส์ แซควิก (James Chadwick) นักวิทยาศาสตร์ชาวอังกฤษ
ได้ทดลองยิงอนุภาคแอลฟาไปยังธาตุชนิดต่างๆ โดยใช้ เครื่องมือที่ละเอียดถูก
ต้องยิ่งขึ้น และพิสูจน์ได้ว่าภายในนิวเคลียสจะมี
อนุภาคอีกชนิดหนึ่งซึ่งเป็นกลางทางไฟฟ้าอยู่ด้วย และเรียกอนุภาคนั้นว่า
นิวตรอน จากการค้นพบนิวตรอน จึงทำให้โครงสร้างของอะตอมเปลี่ยนแปลง
ไปจากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดเล็กน้อยทำให้ทราบว่าภายใน
อะตอมจะประกอบด้วยอนุภาค 3 ชนิด คือ อิเล็กตรอน
นิวตรอน จากการค้นพบนิวตรอน จึงทำให้โครงสร้างของอะตอมเปลี่ยนแปลง
ไปจากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดเล็กน้อยทำให้ทราบว่าภายใน
อะตอมจะประกอบด้วยอนุภาค 3 ชนิด คือ อิเล็กตรอน
โปรตอน และ นิวตรอน โดยเรียกอนุภาคทั้ง 3 ชนิดว่าเป็นอนุภาคมูล
ฐานของอะตอม
ดังนั้นแบบจำลองอะตอมจึงเปลี่ยนไป ซึ่งมีลักษณะดังนี้
ในปัจจุบันนอกจากจะพบอนุภาคมูลฐานของอะตอมซึ่งจัดว่า
เป็นอนุภาคที่มีความคงตัวภายในอะตอมแล้วยังมีอนุภาคอื่น ๆ อีกหลายชนิด
ที่อยู่ภายในอะตอม แต่เป็นอนุภาคที่ไม่คงตัว ซึ่งอาจจะเกิดจากนิวเคลียสของ
อะตอมถูกชนด้วยอนุภาคอื่น ๆ ตัวอย่างของอนุภาคที่ไม่คงตัว ได้แก่
โพสิตรอน (Positron) ที่เกิดในปฏิกิริยานิวเคลียร์มีมวลน้อยมากจนเกือบ
เป็นศูนย์ และมีชอน (Meson) ซึ่งมีมวลอยู่ระหว่างโปรตอนกับอิเล็กตรอน
และเชื่อกันว่ามีส่วนช่วยให้โปรตอนและ
นิวตรอนสามารถยึดเหนี่ยวอยู่ด้วยกันได้ภายในนิวเคลียส "อะตอมมีลักษณะ
เป็นทรงกลม ประกอบด้วย
โปรตอนและนิวตรอนรวมอยู่ตรงกลางของอะตอม เรียกว่า นิวเคลียส และมีอิเล็กตรอนซึ่งมีจำนวน
เท่ากับโปรตอนวิ่งอยู่รอบ ๆ นิวเคลียส”
ฐานของอะตอม
ดังนั้นแบบจำลองอะตอมจึงเปลี่ยนไป ซึ่งมีลักษณะดังนี้
ในปัจจุบันนอกจากจะพบอนุภาคมูลฐานของอะตอมซึ่งจัดว่า
เป็นอนุภาคที่มีความคงตัวภายในอะตอมแล้วยังมีอนุภาคอื่น ๆ อีกหลายชนิด
ที่อยู่ภายในอะตอม แต่เป็นอนุภาคที่ไม่คงตัว ซึ่งอาจจะเกิดจากนิวเคลียสของ
อะตอมถูกชนด้วยอนุภาคอื่น ๆ ตัวอย่างของอนุภาคที่ไม่คงตัว ได้แก่
โพสิตรอน (Positron) ที่เกิดในปฏิกิริยานิวเคลียร์มีมวลน้อยมากจนเกือบ
เป็นศูนย์ และมีชอน (Meson) ซึ่งมีมวลอยู่ระหว่างโปรตอนกับอิเล็กตรอน
และเชื่อกันว่ามีส่วนช่วยให้โปรตอนและ
นิวตรอนสามารถยึดเหนี่ยวอยู่ด้วยกันได้ภายในนิวเคลียส "อะตอมมีลักษณะ
เป็นทรงกลม ประกอบด้วย
โปรตอนและนิวตรอนรวมอยู่ตรงกลางของอะตอม เรียกว่า นิวเคลียส และมีอิเล็กตรอนซึ่งมีจำนวน
เท่ากับโปรตอนวิ่งอยู่รอบ ๆ นิวเคลียส”
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
จากการศึกษาสมบัติของอนุภาคมูลฐานของอะตอมทั้ง 3 ชนิด พบว่าอิเล็กตรอนแต่ละ
ตัวมีประจุเท่ากับโปรตอน แต่เป็นประจุตรงกันข้าม คืออิเล็กตรอนมีประจุลบ แต่โปรตอนมีประจุบวก
ในขณะที่นิวตรอนเป็นกลางทางไฟฟ้า คือประจุเป็นศูนย์ นอกจากนี้ยังทราบว่ามวลของโปรตอนและ
นิวตรอนมีค่าใกล้เคียงกันมาก ส่วนมวลของอิเล็กตรอนมีค่าน้อยมากเมื่อเปรียบเทียบกับโปรตอน
ตัวมีประจุเท่ากับโปรตอน แต่เป็นประจุตรงกันข้าม คืออิเล็กตรอนมีประจุลบ แต่โปรตอนมีประจุบวก
ในขณะที่นิวตรอนเป็นกลางทางไฟฟ้า คือประจุเป็นศูนย์ นอกจากนี้ยังทราบว่ามวลของโปรตอนและ
นิวตรอนมีค่าใกล้เคียงกันมาก ส่วนมวลของอิเล็กตรอนมีค่าน้อยมากเมื่อเปรียบเทียบกับโปรตอน
1.3.2 เลขอะตอม เลขมวล และ ไอโซโทป
จากการค้นพบนิวตรอนทำให้ทราบว่าแบบจำลองอะตอมประกอบด้วยอนุภาคมูลฐาน 3
ชนิด คือ อิเล็กตรอน โปรตอน และนิวตรอน เพื่อความสะดวกในการเขียนโครงสร้างของอะตอม
นักวิทยาศาสตร์จึงได้กำหนดสัญลักษณ์ต่าง ๆ แทนอนุภาคมูลฐานเหล่านั้นขึ้นมา คือเลขอะตอม
และเลขมวลของธาตุ
ชนิด คือ อิเล็กตรอน โปรตอน และนิวตรอน เพื่อความสะดวกในการเขียนโครงสร้างของอะตอม
นักวิทยาศาสตร์จึงได้กำหนดสัญลักษณ์ต่าง ๆ แทนอนุภาคมูลฐานเหล่านั้นขึ้นมา คือเลขอะตอม
และเลขมวลของธาตุ
1.3.2.1 เลขอะตอม (Atomic number)
เลขอะตอม หมายถึง ตัวเลขที่แสดงจำนวนโปรตอนที่มีอยู่ในนิวเคลียสของธาตุ โดยทั่ว
ไปใช้สัญลักษณ์Z
ไปใช้สัญลักษณ์Z
อะตอมของธาตุชนิดหนึ่ง ๆ จะมีจำนวนโปรตอนเฉพาะตัวไม่ซ้ำกับธาตุอื่น ๆ ธาตุชนิดเดียว
กันจะต้องมีจำนวนโปรตอนหรือเลขอะตอมเท่ากัน
กันจะต้องมีจำนวนโปรตอนหรือเลขอะตอมเท่ากัน
ถ้าอะตอมเป็นกลาง จำนวนอิเล็กตรอน เท่ากับ จำนวนโปรตอน
ดังนั้น เลขอะตอม = จำนวนโปรตอน = จำนวนอิเล็กตรอน
แต่ถ้าอะตอมไม่เป็นกลาง จำนวนอิเล็กตรอนจะไม่เท่ากับโปรตอน เช่น
-ไอออนบวกจะมีโปรตอนมากกว่าอิเล็กตรอน
-ไอออนลบจะมีโปรตอนน้อยกว่าอิเล็กตรอน
นั่นคือ เลขอะตอม = จำนวนโปรตอน ไม่เท่ากัน จำนวนอิเล็กตรอน
1.3.2.2 เลขมวล (Mass number) ใช้สัญลักษณ์เป็น A หมายถึง ผลรวมของจำนวน
โปรตอน และจำนวนนิวตรอนในนิวเคลียส เลขมวลไม่ใช่มวลอะตอม เลขมวลจะต้องเป็นจำนวนเต็มเสมอ
แต่มวลอะตอมอาจจะเป็นเลขจำนวนเต็มหรือไม่ก็ได้
โปรตอน และจำนวนนิวตรอนในนิวเคลียส เลขมวลไม่ใช่มวลอะตอม เลขมวลจะต้องเป็นจำนวนเต็มเสมอ
แต่มวลอะตอมอาจจะเป็นเลขจำนวนเต็มหรือไม่ก็ได้
ของอะตอม โดยบอกรายละเอียดเกี่ยวกับจำนวนอนุภาคมูลฐานของอะตอม วิธีการเขียนตามข้อตกลงสากล
คือเขียนเลขอะตอมไว้มุมล่างซ้าย และเลขมวลไว้มุมบนซ้ายของสัญลักษณ์ธาตุ ซึ่งเขียนเป็นสูตรทั่ว ๆ
ไปได้ดังนี้
ถ้าให้ n = จำนวนนิวตรอน
จะสามารถหาความสัมพันธ์ระหว่างเลขอะตอม เลขมวล และจำนวนนิวตรอนได้ดังนี้
ธาตุที่เป็นไอโซโทปกัน ถึงแม้จะเป็นธาตุชนิดเดียวกัน แต่มวลอะตอมจะไม่เท่ากัน รวมทั้งสมบัติทางกายภาพแตก
ต่างกันด้วย แต่สมบัติทางเคมีเกือบเหมือนกันทุกประการ
ธาตุชนิดหนึ่ง ๆ อาจจะมีได้หลายไอโซโทป บางไอโซโทปมีอยู่ในธรรมชาติแต่บางไอโซโทปก็สังเคราะห์ขึ้นมาทั้งนี้
เพื่อนำไปใช้ประโยชน์ในแง่ต่าง ๆ กัน ไอโซโทปของธาตุชนิดหนึ่ง ๆ มักจะมีปริมาณในธรรมชาติไม่เท่ากัน เช่น ธาตุไฮโดรเจน
ในธรรมชาติจะมีโปรเทรียม อยู่ถึง 99.99% ดังนั้น จึงมีดิวทีเรียมเพียงเล็กน้อย ส่วนทริเทรียม เป็นไอโซโทป
กัมมันตรังสีจึงไม่เสถียร
เพื่อนำไปใช้ประโยชน์ในแง่ต่าง ๆ กัน ไอโซโทปของธาตุชนิดหนึ่ง ๆ มักจะมีปริมาณในธรรมชาติไม่เท่ากัน เช่น ธาตุไฮโดรเจน
ในธรรมชาติจะมีโปรเทรียม อยู่ถึง 99.99% ดังนั้น จึงมีดิวทีเรียมเพียงเล็กน้อย ส่วนทริเทรียม เป็นไอโซโทป
กัมมันตรังสีจึงไม่เสถียร
1.4 แบบจำลองอะตอมของโบร์
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด กล่าวถึงอิเล็กตรอนวิ่งรอบ ๆ นิวเคลียส แต่ไม่ทราบว่าอิเล็กตรอนอยู่รอบ ๆ นิวเคลียสมีการจัดเรียงอิเล็กตรอนอย่างไร นักวิทยาศาสตร์จึงมีการศึกษาข้อมูลใหม่
มาสร้างแบบจำลอง ที่เน้นรายละเอียดเกี่ยวกับการจัดเรียงอิเล็กตรอนที่อยู่รอบนิวเคลียส โดยศึกษาจาก
สเปกตรัมและค่าพลังงานไอออไนเซชัน
มาสร้างแบบจำลอง ที่เน้นรายละเอียดเกี่ยวกับการจัดเรียงอิเล็กตรอนที่อยู่รอบนิวเคลียส โดยศึกษาจาก
สเปกตรัมและค่าพลังงานไอออไนเซชัน
1.4.1 สเปกตรัม
สเปกตรัมเป็นแสงที่ถูกแยกกระจายออกเป็นแถบสีต่าง ๆ และแสงเป็นรูปหนึ่งของคลื่นแม่เหล็กไฟฟ้า
ฉะนั้น เพื่อความเข้าใจจำเป็นต้องรู้เกี่ยวกับส่วนประกอบของคลื่นและพลังงานคลื่นแม่เหล็กไฟฟ้าเสียก่อนแล้วนำความรู้เรื่อง
ดังกล่าวมาใช้ในการวิเคราะห์สเปกตรัมได้
1.4.2 ส่วนประกอบของคลื่น
ฉะนั้น เพื่อความเข้าใจจำเป็นต้องรู้เกี่ยวกับส่วนประกอบของคลื่นและพลังงานคลื่นแม่เหล็กไฟฟ้าเสียก่อนแล้วนำความรู้เรื่อง
ดังกล่าวมาใช้ในการวิเคราะห์สเปกตรัมได้
1.4.2 ส่วนประกอบของคลื่น
1) สันคลื่นหรือยอดคลื่น คือตำแหน่งสุงสุดของคลื่น ในภาพ คือตำแหน่ง ก และ ข
2) ท้องคลื่น คือตำแหน่งที่ต่ำสุดของคลื่น ในภาพคือตำแหน่ง ค
3) ความยาวคลื่นใช้สัญลักษณ์แลมป์ดา คือระยะทางที่คลื่นเคลื่อนที่ครบ 1 รอบ ในภาพคือ
ตำแหน่ง ก ถึง ข ความยาวคลื่นมีหน่วยเป็นเมตรหรือมีหน่วยเป็นนาโนเมตร (nm)
ก็ได้โดย 1 นาโนเมตร = 10-9 เมตร
3) ความยาวคลื่นใช้สัญลักษณ์แลมป์ดา คือระยะทางที่คลื่นเคลื่อนที่ครบ 1 รอบ ในภาพคือ
ตำแหน่ง ก ถึง ข ความยาวคลื่นมีหน่วยเป็นเมตรหรือมีหน่วยเป็นนาโนเมตร (nm)
ก็ได้โดย 1 นาโนเมตร = 10-9 เมตร
แสดงความยาวของคลื่น
4) ความถี่ใช้สัญลักษณ์ n (อ่านว่านิว) คือจำนวนรอบที่คลื่นเคลื่อนที่ผ่านจุดหนึ่งในเวลา
1 วินาที ความถี่มีหน่วยเป็น รอบ/วินาที (s-1) หรือ (Hz)
แสดงความถี่ของคลื่น
5) แอมปริจูดคือความสูงของคลื่นซึ่งประกอบด้วยคลื่นที่มีความถี่และความยาวคลื่น
ต่าง ๆ กันเป็นช่วงกว้าง มีทั้งช่วงความยาวคลื่นที่มองเห็นและความยาวคลื่นที่มองไม่เห็น ดังรูป
แสดงแอมปริจูดคลื่นแม่เหล็กไฟฟ้าเมื่อนำแสงขาวที่เกิดจากดวงอาทิตย์ส่องผ่านปริซึมหรือเกรตติง แสงสีขาวจะแยกเป็นสีต่างๆ ต่อเนื่อง
ซึ่งเรียกว่า แถบสเปกตรัม
ตารางที่ 2 แสดงสีต่าง ๆ ในแถบสเปกตรัมของแสง
แสงสีต่าง ๆ ในแถบสเปกตรัมของแสงขาว (แสงอาทิตย์)
การที่แสงขาวผ่านปริซึมหรือเกรตติง แล้วแยกออกเป็นแสงสีต่าง ๆ อธิบายได้ว่า แสงสีขาวเดินทางจาก
อากาศผ่านตัวกลางชนิดใหม่คือ ปริซึมก็จะเกิดการหักเห และกระจายออกเป็นแสงสีต่าง ๆ ตามความ
ยาวคลื่นของแสงนั้น ๆ โดยแสงที่มีความยาวคลื่นมากจะหักเหน้อยกว่าแสงที่มีความยาวน้อย
อากาศผ่านตัวกลางชนิดใหม่คือ ปริซึมก็จะเกิดการหักเห และกระจายออกเป็นแสงสีต่าง ๆ ตามความ
ยาวคลื่นของแสงนั้น ๆ โดยแสงที่มีความยาวคลื่นมากจะหักเหน้อยกว่าแสงที่มีความยาวน้อย
ดังตารางที่ 2
จากตารางที่ 2 พบว่า แสงสีม่วงมีความยาวคลื่นน้อยที่สุด จะหักเหได้มากที่สุด แสงสีแดงมีความยาวคลื่น
มากที่สุดจะหักเหได้น้อยที่สุด สำหรับคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นในช่วงอื่น ๆ ก็มีการหักเหเมื่อผ่านปริซึม
ได้เช่นเดียวกันแต่ไม่สามารถมองเห็นได้เหมือนแสงสีขาว
มากที่สุดจะหักเหได้น้อยที่สุด สำหรับคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นในช่วงอื่น ๆ ก็มีการหักเหเมื่อผ่านปริซึม
ได้เช่นเดียวกันแต่ไม่สามารถมองเห็นได้เหมือนแสงสีขาว
มักซ์ พลังค์ (Max Planck, 1858-1947) นักวิทยาศาสตร์ยาวเยอรมัน ได้ศึกษาพลังงานของคลื่นแม่เหล็กไฟฟ้า
และสรุปว่าพลังงานของคลื่นแม่เหล็กไฟฟ้าจะเป็นวัดส่วนโดยตรงกับความถี่ของคลื่นนั้น โดยเขียนความสัมพันธ์ได้ดังนี้
(Kotz , Treichel, and Weaver, 2005 : 302)
และสรุปว่าพลังงานของคลื่นแม่เหล็กไฟฟ้าจะเป็นวัดส่วนโดยตรงกับความถี่ของคลื่นนั้น โดยเขียนความสัมพันธ์ได้ดังนี้
(Kotz , Treichel, and Weaver, 2005 : 302)
E = hV ................................(1)
เมื่อ E คือ พลังงานมีหน่วยเป็นจูล (J)
h คือ ค่าคงที่ของพลังค์ มีค่า 6.626 x 10-34 จูล.วินาที (J.s)
n คือ ความถี่ของคลื่นแม่เหล็กไฟฟ้ามีหน่วยเป็นเฮิร์ตซ์ (s-1)
ในการศึกษาเกี่ยวกับคลื่นโดยทั่วไป มักจะวัดเป็นความยาวคลื่น เมื่อทราบความยาวคลื่นก็คำนวณความถี่
ได้จากความสัมพันธ์ ดังนี้ (Kotz , Treichel, and Weaver, 2005 : 297)
ได้จากความสัมพันธ์ ดังนี้ (Kotz , Treichel, and Weaver, 2005 : 297)
4. เส้นสเปกตรัมของธาตุและสารประกอบ
ถ้าเปรียบเทียบสเปกตรัมของแสงอาทิตย์ และแสงจากหลอดฟลูออเรสเซนต์ จะพบว่าสเปกตรัมที่เห็นจาก
แสงอาทิตย์มีลักษณะเป็นแบบต่อเนื่องกัน เรียกว่าแถบสเปกตรัม ส่วนสเปกตรัมที่ได้จากแสงของหลอด
ฟลูออเรสเซนต์นั้นจะเห็นแถบสเปกรัม
ของแสงขาวจากดวงอาทิตย์เป็นพื้นแล้ว ยังเห็นสเปกตรัมสีเขียวปรากฎอย่างชัดเจนอยุ่บนแถบสเปกตรัม
สีเขียวอย่างชัดเจน
ซึ่งสเปกตรัมที่เห็นนี้เป็นสเปกตรัมที่เกิดจากธาตุที่บรรจุในหลอดฟลูออเรสเซนต์
เมื่อนำธาตุหรือสารประกอบเผาจะได้แสงไฟของธาตุออกมาเรียกว่าเปลวไฟธาตุ
ซึ่งเกิดจากส่วนที่เป็นไอออนของโลหะ
เมื่อใช้สเปกโทรสโคป หรือเกรตติงส่องดูเปลวไฟจะมีสีปรากฎเป็นเส้น ๆ หลายสี เรียกว่าเส้นสเปกตรัม
ฉะนั้นการวิเคราะห์
ธาตุองค์ประกอบทำได้โดย
1. วิเคราะห์จากเปลวไฟของธาตุ
1.1 ถ้าสารประกอบที่มีธาตุองค์ประกอบเป็นโลหะชนิดเดียวกันจะให้สีของเปลวไฟธาตุเหมือนกัน
1.2 ถ้าสารประกอบที่มีธาตุองค์ประกอบเป็นโลหะต่างชนิดกันจะให้สีของเปลวไฟธาตุ
ต่างกัน
6. การแปลความหมายเส้นสเปกตรัม
นักวิทยาศาสตร์ได้ใช้สเปกตรัมของธาตุไฮโดรเจนในการแปลความหมายของเส้นสเปกตรัม
เพราะไฮโดรเจนมีอิเล็กตรอนเพียงตัวเดียว และมีเส้นสเปกตรัมไม่ซับซ้อน ทำให้ง่ายต่อการศึกษา
ซึ่งสามารถอธิบายได้โดยอาศัยการทดลองของบาลเมอร์
บาร์เมอร์ได้ศึกษาการเกิดสเปกตรัมของก๊าซไฮโดรเจน พบว่าสเปกตรัมของไฮโดรเจนที่มองเห็น
นักวิทยาศาสตร์ได้ใช้สเปกตรัมของธาตุไฮโดรเจนในการแปลความหมายของเส้นสเปกตรัม
เพราะไฮโดรเจนมีอิเล็กตรอนเพียงตัวเดียว และมีเส้นสเปกตรัมไม่ซับซ้อน ทำให้ง่ายต่อการศึกษา
ซึ่งสามารถอธิบายได้โดยอาศัยการทดลองของบาลเมอร์
บาร์เมอร์ได้ศึกษาการเกิดสเปกตรัมของก๊าซไฮโดรเจน พบว่าสเปกตรัมของไฮโดรเจนที่มองเห็น
ด้วยตาเปล่ามี 4 เส้น คือ ม่วง น้ำเงิน น้ำทะเล และแดง
เมื่อพิจารณาผลต่างระหว่าง พลังงานของเส้นสเปกตรัมของไฮโดรเจนทั้ง 4 เส้นได้ผลดังตารางที่ 3
จากข้อมูลจะเห็นว่า ความแตกต่างระหว่างพลังงานของแต่ละระดับอยู่ที่ถัดกันจะมีค่าไม่เท่ากัน
และความแตกต่างจะมีค่าน้อยลง เมื่อระดับพลังงานสูงขึ้น จากการศึกษาเรื่องสเปกตรัมทำให้ได้ข้อสรุปว่า
และความแตกต่างจะมีค่าน้อยลง เมื่อระดับพลังงานสูงขึ้น จากการศึกษาเรื่องสเปกตรัมทำให้ได้ข้อสรุปว่า
1. เมื่ออิเล็กตรอนได้รับพลังงาน อิเล็กตรอนจะขึ้นไปอยู่ในระดับพลังงานที่สูงขึ้น แต่จะอยู่ใน
ระดับพลังงานใด ก็ขึ้นอยู่กับปริมาณพลังงานที่ได้รับ การที่อิเล็กตรอนขึ้นไปสู่ระดับพลังงานใหม่ ซึ่งมี
พลังงานสูงขึ้น ทำให้ อะตอมไม่เสถียร อิเล็กตรอนจึงเข้ามาอยู่ในระดับพลังงานที่ต่ำกว่าในการเปลี่ยน
ตำแหน่งอิเล็กตรอนจะคาย พลังงานออกมาในรูปคลื่นแม่เหล็กไฟฟ้า เมื่อส่องด้วยสเปกโทรสโคปจะ
ปรากฏเป็นเส้นสเปกตรัม
ระดับพลังงานใด ก็ขึ้นอยู่กับปริมาณพลังงานที่ได้รับ การที่อิเล็กตรอนขึ้นไปสู่ระดับพลังงานใหม่ ซึ่งมี
พลังงานสูงขึ้น ทำให้ อะตอมไม่เสถียร อิเล็กตรอนจึงเข้ามาอยู่ในระดับพลังงานที่ต่ำกว่าในการเปลี่ยน
ตำแหน่งอิเล็กตรอนจะคาย พลังงานออกมาในรูปคลื่นแม่เหล็กไฟฟ้า เมื่อส่องด้วยสเปกโทรสโคปจะ
ปรากฏเป็นเส้นสเปกตรัม
2. อิเล็กตรอนอาจมีการเคลื่อนที่ในชั้นต่าง ๆ ได้ โดยไม่จำเป็นต้องเป็นชั้นที่อยู่ติดกัน จึงเป็นเหตุ
ให้มีเส้น สเปกตรัมสีต่าง ๆ
ให้มีเส้น สเปกตรัมสีต่าง ๆ
3. ภายในอะตอมจะแบ่งพลังงานเป็นชั้นๆ โดยระดับพลังงานต่ำจะอยู่ใกล้นิวเคลียส ระดับพลังงาน
สูงอยู่ไกลนิวเคลียส ดังนั้นอิเล็กตรอนในระดับพลังงานต่ำจะอยู่ใกล้นิวเคลียส อิเล็กตรอนในระดับพลังงาน
สูงจะอยู่ไกลนิวเคลียส
4. ระดับพลังงานต่ำอยู่ห่างกัน ระดับพลังงานสูงจะอยู่ชิดกันมากขึ้น
สูงอยู่ไกลนิวเคลียส ดังนั้นอิเล็กตรอนในระดับพลังงานต่ำจะอยู่ใกล้นิวเคลียส อิเล็กตรอนในระดับพลังงาน
สูงจะอยู่ไกลนิวเคลียส
4. ระดับพลังงานต่ำอยู่ห่างกัน ระดับพลังงานสูงจะอยู่ชิดกันมากขึ้น
จากความรู้เรื่องสเปกตรัม นีลย์ โบร์ จึงสร้างแบบจำลองอะตอมใหม่ ซึ่งมีลักษณะคล้ายกับแบบ
จำลองอะตอมของรัทเทอร์ฟอร์ด แต่แตกต่างกันเรื่องการจัดเรียงอิเล็กตรอน ดังนั้นอะตอมประกอบ
ด้วยโปรตอนและนิวตรอนรวมกันเป็นนิวเคลียส โดยมีอิเล็กตรอนวิ่งรอบๆ นิวเคลียสเป็นชั้น ๆ ตาม
ระดับพลังงาน
จำลองอะตอมของรัทเทอร์ฟอร์ด แต่แตกต่างกันเรื่องการจัดเรียงอิเล็กตรอน ดังนั้นอะตอมประกอบ
ด้วยโปรตอนและนิวตรอนรวมกันเป็นนิวเคลียส โดยมีอิเล็กตรอนวิ่งรอบๆ นิวเคลียสเป็นชั้น ๆ ตาม
ระดับพลังงาน
ฉะนั้นแบบจำลองอะตอมของโบร์ จึงคล้ายกับวงจรของดาวเคราะห์รอบดวงอาทิตย์ และเรียกระดับ
พลังงานที่ใกล้นิวเคลียสที่มีพลังงานต่ำที่สุดนี้ว่าชั้น K และชั้นถัด ๆ ไปเป็น L และ M ตามลำดับ
พลังงานที่ใกล้นิวเคลียสที่มีพลังงานต่ำที่สุดนี้ว่าชั้น K และชั้นถัด ๆ ไปเป็น L และ M ตามลำดับ
แบบจำลองอะตอมของโบร์
7. แบบจำลองอะตอมกลุ่มหมอก
แบบจำลองอะตอมของโบร์ ใช้อธิบายเกี่ยวกับเส้นสเปกตรัมของธาตุไฮโดรเจนได้ดี
แต่ไม่สามารถอธิบายเส้นสเปกตรัมของอะตอมที่มีหลายอิเล็กตรอนได้ จึงได้มีการศึกษาเพิ่มเติมทาง
กลศาสตร์ควอนตัม แล้วสร้างสมการสำหรับใช้คำนวณโอกาสที่จะพบอิเล็กตรอนในระดับพลังงานต่าง ๆ
ขึ้นมา จนได้แบบจำลองใหม่ ที่เรียกว่าแบบจำลองอะตอมแบบกลุ่มหมอก ซึ่งมีรายละเอียดดังนี้
อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสอย่างรวดเร็ว ด้วยรัศมีไม่แน่นอนจึงไม่สามารถบอก
ตำแหน่งที่แน่นอนของอิเล็กตรอนได้บอกได้แต่เพียงโอกาสที่จะพบอิเล็กตรอนในบริเวณต่าง ๆ
ปรากฏการณ์แบบนี้เรียกว่ากลุ่มหมอกของอิเล็กตรอน บริเวณที่มีกลุ่มหมอกอิเล็กตรอนหนาแน่นจะมี
โอกาสพบอิเล็กตรอนมากกว่าบริเวณที่เป็นหมอกจาง
แต่ไม่สามารถอธิบายเส้นสเปกตรัมของอะตอมที่มีหลายอิเล็กตรอนได้ จึงได้มีการศึกษาเพิ่มเติมทาง
กลศาสตร์ควอนตัม แล้วสร้างสมการสำหรับใช้คำนวณโอกาสที่จะพบอิเล็กตรอนในระดับพลังงานต่าง ๆ
ขึ้นมา จนได้แบบจำลองใหม่ ที่เรียกว่าแบบจำลองอะตอมแบบกลุ่มหมอก ซึ่งมีรายละเอียดดังนี้
อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสอย่างรวดเร็ว ด้วยรัศมีไม่แน่นอนจึงไม่สามารถบอก
ตำแหน่งที่แน่นอนของอิเล็กตรอนได้บอกได้แต่เพียงโอกาสที่จะพบอิเล็กตรอนในบริเวณต่าง ๆ
ปรากฏการณ์แบบนี้เรียกว่ากลุ่มหมอกของอิเล็กตรอน บริเวณที่มีกลุ่มหมอกอิเล็กตรอนหนาแน่นจะมี
โอกาสพบอิเล็กตรอนมากกว่าบริเวณที่เป็นหมอกจาง
การเคลื่อนที่ของอิเล็กตรอนรอบนิวเคลียสอาจเป็นรูปทรงกลมหรือรูปอื่น ๆ ขึ้นอยู่กับ
ระดับพลังงานของอิเล็กตรอน แต่ผลรวมของกลุ่มหมอกของอิเล็กตรอนทุกระดับพลังงานจะเป็นรูป
ระดับพลังงานของอิเล็กตรอน แต่ผลรวมของกลุ่มหมอกของอิเล็กตรอนทุกระดับพลังงานจะเป็นรูป
แบบจำลองอะตอมแบบกลุ่มหมอก
ที่มา ; 1.http://tinyurl.com/3xzuxb7
2.http://tinyurl.com/3xzuxb7
3.Ebbing and Gammon (2007 : 45)
4. Kotz , Treichel, and Weaver, (2005 : 299)
5.กระทรวงศึกษาธิการ (2550 : 18)
ที่มา ; 1.http://tinyurl.com/3xzuxb7
2.http://tinyurl.com/3xzuxb7
3.Ebbing and Gammon (2007 : 45)
4. Kotz , Treichel, and Weaver, (2005 : 299)
5.กระทรวงศึกษาธิการ (2550 : 18)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น